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Abstract
A complexified von Roos Hamiltonian is considered and a Hermitian first-
order intertwining differential operator is used to obtain the related position-
dependent mass η-weak-pseudo-Hermitian Hamiltonians. Using a Liouvillean-
type change of variables, the η-weak-pseudo-Hermitian von Roos Hamiltonians
Hx are mapped into the traditional Schrödinger Hamiltonian form Hq , where
exact isospectral correspondence between Hx and Hq is obtained. Under a
‘user-friendly’ position-dependent-mass setting, it is observed that for each
exactly solvable η-weak-pseudo-Hermitian reference-Hamiltonian Hq there
is a set of exactly solvable η-weak-pseudo-Hermitian isospectral target-
Hamiltonians Hx . A non-Hermitian PT -symmetric Scarf II and a non-
Hermitian periodic-type PT -symmetric Samsonov–Roy potentials are used as
reference models and the corresponding η-weak-pseudo-Hermitian isospectral
target-Hamiltonians are obtained.

PACS numbers: 03.65.Ge, 03.65.Fd, 03.65.Ca

1. Introduction

Subjected to von Roos constraint α + β + γ = −1;α, β, γ ∈ R, the von Roos position-
dependent-mass (PDM) Hamiltonian [1–12] reads

H = −∂x

(
1

M(x)

)
∂x + Ṽ (x), (1)

with

Ṽ (x) = 1

2
(1 + β)

M ′′(x)

M(x)2
− [α(α + β + 1) + β + 1]

M ′(x)2

M(x)3
+ V (x), (2)
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and primes denote derivatives. An obvious profile change of the potential Ṽ (x) obtains as α, β

and γ change, manifesting in effect an ordering ambiguity conflict in the process of choosing
a unique kinetic energy operator

T = − 1
2 [M(x)α∂xM(x)β∂xM(x)γ + M(x)γ ∂xM(x)β∂xM(x)α] (3)

Hence, α, β and γ are usually called the von Roos ambiguity parameters. Yet, such PDM-
quantum-particles (i.e. M(x) = m◦m(x)) are used in the energy density many-body problem,
in the determination of the electronic properties of semiconductors and quantum dots [1–5].

Regardless of the continuity requirements on the wavefunction at the boundaries of
abrupt herterojunctions between two crystals [6] and/or Dutra’s and Almeida’s [7] reliability
test, there exist several suggestions for the kinetic energy operator in (3). We may
mention the Gora’s and Williams’ (β = γ = 0, α = −1) [8], Ben Daniel’s and Duke’s
(α = γ = 0, β = −1) [9], Zhu’s and Kroemer’s (α = γ = −1/2, β = 0) [10], Li’s and
Kuhn’s (β = γ = −1/2, α = 0) [11] and the very recent Mustafa’s and Mazharimousavi’s
(α = γ = −1/4, β = −1/2) [3]. Nevertheless, in this work we shall deal with these orderings
irrespective to their classifications of being ‘good-’ (i.e. satisfying the continuity requirements
on the wavefunction, mentioned above, and surviving the Dutra’s and Almeida’s [7] reliability
test) or ‘to-be-discarded-’ orderings (i.e. not satisfying the continuity requirements on the
wavefunction and/or failing the Dutra’s and Almeida’s [7] reliability test). The reader is
advised to refer to, e.g., Mustafa and Mazharimousavi [3] for more details.

The growing interest in the non-Hermitian pseudo-Hermitian Hamiltonians with real
spectra [13–21], on the other hand, have inspired our recent work on PDM first-order-
intertwining operator and η-weak-pseudo-Hermiticity generators [12]. A Hamiltonian H
is pseudo-Hermitian if it obeys the similarity transformation ηHη−1 = H †, where η is
a Hermitian invertible linear operator and (†) denotes the adjoint. The existence of real
eigenvalues is realized to be associated with a non-Hermitian Hamiltonian provided that it is
an η-pseudo-Hermitian:

ηH = H †η, (4)

with respect to the nontrivial ‘metric’ operator η = O†O, for some linear invertible operator
O : H→H (H is the Hilbert space). However, under some rather mild assumptions, we may
even relax H to be an η-weak-pseudo-Hermitian by not restricting η to be Hermitian (cf, e.g.,
[17]), and linear and/or invertible (cf, e.g., [12, 18–20]).

Whilst in the non-Hermitian pseudo-Hermitian Hamiltonians neighborhood [13–23], the
non-Hermitian PT -symmetric Hamiltonians (i.e. a Bender’s and Boettcher’s [13] initiative on
the so-called nowadays PT -symmetric quantum mechanics) are unavoidably in point. They
form a subclass of the non-Hermitian pseudo-Hermitian Hamiltonians (where P denotes parity
and T mimics the time reversal). Namely, if PT HPT = H and if PT �(x) = ±�(x) the
eigenvalues turn out to be real. However, if the latter condition is not satisfied the eigenvalues
appear in complex-conjugate pairs (cf, e.g., [13]).

In this work, we consider (in section 2) a complexified von Roos Hamiltonian (1) (i.e.
Ṽ (x) −→ Ṽ (x) + iW(x)) regardless of the nature of the ordering of the ambiguity parameters
as to being ‘good’ or ‘to-be-discarded’ ones. A Hermitian first-order differential PDM-
intertwining operator is used to obtain the corresponding non-Hermitian η-weak-pseudo-
Hermitian PDM-Hamiltonian. The related reference-target non-Hermitian η-weak-pseudo-
Hermitian Hamiltonians’ map is also given in the same section. Yet, in connection with the
resulting effective reference potential, a ‘user-friendly’ form is suggested (in section 3) to serve
for exact-solvability of some non-Hermitian η-weak-pseudo-Hermitian PDM-Hamiltonians.
Such a user-friendly form turns out to imply that there is always a set of isospectral target η-
weak-pseudo-Hermitian PDM-Hamiltonians associated with ‘one’ exactly solvable reference
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η-weak-pseudo-Hermitian PDM-Hamiltonian. We use (in the same section) two illustrative
examples (i.e. a complexified PT -symmetric Scarf-II and a periodic-type PT -symmetric
Samsonov–Roy potentials) as reference models and report the corresponding sets of isospectral
η-weak-pseudo-Hermitian target -Hamiltonians. Section 4 is devoted for the concluding
remarks.

2. An η-intertwiner and η-weak-pseudo-Hermitian Hamiltonians’ reference-target map

A complexification of the potential Ṽ (x) in (1) may be achieved by the transformation
Ṽ (x) −→ Ṽ (x) + iW(x), where Ṽ (x),W(x) ∈ R and R � x ∈ (−∞,∞). Hence,
Hamiltonian (1) becomes non-Hermitian and reads

H = −µ(x)2∂2
x − 2µ(x)µ′(x)∂x + Ṽ (x) + iW(x), (5)

with µ(x) = ±1/
√

M(x). A Hermitian first-order intertwining PDM-differential operator
(cf, e.g., Mustafa and Mazharimousavi [12] on the detailed origin of this PDM-operator) of
the form

η = −i[µ(x)∂x + µ′(x)/2] + F(x); F(x), µ(x) ∈ R (6)

would result, when used in (4),

W(x) = −µ(x)F ′(x), (7)

Ṽ (x) = −F(x)2 − 1
2µ(x)µ′′(x) − 1

4µ′(x)2 + α◦, (8)

where α◦ ∈ R is an integration constant. One may then recast V (x) as

V (x) = α◦ − F(x)2 +
(

1
2 + β

)
µ(x)µ′′(x) +

[
4α(α + β + 1) + β + 3

4

]
µ′(x)2. (9)

One should, nevertheless, be reminded that an anti-Hermitian first-order operator of the
form η = µ(x)∂x + µ′(x)/2 + iF(x) will do exactly the same job (cf, e.g., Mustafa and
Mazharimousavi [12]). Moreover, as a result of this intertwining process, a non-Hermitian
η-weak-pseudo-Hermitian Hamiltonian is obtained.

We may now consider our non-Hermitian η-weak-pseudo-Hermitian Hamiltonian in (5),
along with (7) and (8), in the one-dimensional Schrödinger equation

Hxψ(x) = Eψ(x) (10)

and construct the so-called reference-target η-weak-pseudo-Hermitian Hamiltonians’ map
(equation (10) is the so-called target Schrödinger equation). A task that would be achieved
by the substitution

ψ(x) = ϕ(q(x))/
√

µ(x), (11)

to imply, with the requirement

q ′(x) = 1/µ(x) (12)

that removes the first-order derivative ∂qϕ(q), a so-called reference Schrödinger equation

−∂2
qϕ(q(x)) + [Ṽeff(q(x)) − E]ϕ(q(x)) = 0, (13)

where

Ṽeff(q(x))= (β + 1)µ(x)µ′′(x) + [4α(α + β + 1) + β + 1]µ′(x)2 − F(x)2 + α◦ − iµ(x)F ′(x).

(14)
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It is evident that our η-weak-pseudo-Hermitian reference-Hamiltonian

Hq = −∂2
q + Ṽeff(q), (15)

of (13), shares exactly the same spectrum of the η-weak-pseudo-Hermitian target-Hamiltonian

Hx = −µ(x)2∂2
x − 2µ(x)µ′(x)∂x − 1

4µ′(x)2 − 1
2µ(x)µ′′(x) + Ṽeff(x), (16)

defined in (5), (7) and (8), where

Ṽeff(x) = α◦ − F(x)2 − iµ(x)F ′(x),

and Hq and Hx are isospectral. Nevertheless, one should keep in mind that Hq and Hx may very
well interchange their roles as to being a reference or a target Hamiltonians. That is, it might
just happen that Hx is exactly solvable and in this case Hx becomes a reference-Hamiltonian
and Hq plays the role of being a target-Hamiltonian.

3. PDM-functions admitting isospectrality

It is obvious that the effective reference potential in (14) suggests that the choice of

(β + 1)µ(x)µ′′(x) + [4α(α + β + 1) + β + 1]µ′(x)2 = 0, (17)

would imply a ‘user-friendly’ effective reference potential of the form

Ṽeff(q) = α◦ − F(q)2 − iF ′(q). (18)

Hence

µ′(x)µ(x)δ = const.

and

µ(x) = [C1x + C2]1/(δ+1); δ =
[

4α + 1 +
4α2

β + 1

]
, (19)

where C1 and C2 are two constants and C1, C2 ∈ R. Nevertheless, one should note that the
Ben Daniel’s and Duke’s (α = γ = 0, β = −1) ordering (although β = −1 is not allowed
by (19) but satisfies (17)) has already been discussed by Mustafa and Mazharimousavi [12].
Hence, the Ben Daniel’s and Duke’s ordering shall not be considered in the forthcoming
studies. Moreover, under such mass settings, we may report that; for Gora’s and Williams’
(β = γ = 0, α = −1) and Li’s and Kuhn’s (β = γ = −1/2, α = 0) orderings
δGW = δLK = 1, for Zhu’s and Kroemer’s (α = γ = −1/2, β = 0) ordering δZK = 0,
and for Mustafa’s and Mazharimousavi’s (α = γ = −1/4, β = −1/2) ordering δMM = 1/2.

Moreover, it is evident that the position-dependent-mass M(x) under the current settings
is strictly determined through (17) and consequently through (19) to read

M(x) = µ(x)−2 = [C1x + C2]−2/(δ+1). (20)

Hence, one may safely conclude that this PDM form identifies a class of isospectral position-
dependent-mass functions satisfying the effective reference potential Ṽeff(q) of (18), for each
form of the η-weak-pseudo-Hermiticity generator F(q), and implies

q(x) =
∫ x

µ(y)−1 dy =

⎧⎪⎪⎨
⎪⎪⎩

(δ + 1)

δC1
[C1x + C2]δ/(δ+1); for δ �= 0

1

C1
ln(C1x + C2); for δ = 0

. (21)

However, it should be noted that this case (i.e. M(x) is strictly determined) is unlike the
one we have very recently considered in [12], where Ben Daniel’s and Duke’s ordering (i.e.
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α = γ = 0, β = −1) was used and the position-dependent-mass was left arbitrary instead
(but, of course, a positive-valued function). Yet, one should clearly observe that the form of
our Ṽeff(q) in (18) depends only on the choice of our η-weak-pseudo-Hermiticity generator
F(q). It is advised that such a choice should be oriented so that an exactly solvable η-weak-
pseudo-Hermitian reference Hamiltonian is obtained. Consequently, a set of exactly solvable
isospectral η-weak-pseudo-Hermitian target-Hamiltonians of (16) would result and depend
only on the class of the strictly determined position-dependent-mass functions in (20). Two
illustrative examples are in order.

3.1. A complexified PT -symmetric Scarf-II model

Let us recollect that an η-weak-pseudo-Hermiticity generator (cf, e.g., Mustafa and
Mazharimousavi [12]) of the form

F(q) = −V2 sech q 	⇒ F ′(q) = V2 sech q tanh q (22)

would yield (with α◦ = 0) a reference effective complexified PT -symmetric Scarf-II potential
of the form

Ṽeff(q) = −V 2
2 sech2q − iV2 sech q tanh q; R � V2 �= 0. (23)

Which, in turn, would imply a target effective potential of the form

Ṽeff(x) = −4V 2
2

f (x)2

(f (x)2 + 1)2
∓ 2iV2

f (x)(f (x)2 − 1)

(f (x)2 + 1)2
, (24)

where f (x) = ± exp[q(x)], with q(x) given in (21). In this case, the target effective potentials
in (24) form a set of isospectral η-weak-pseudo-Hermitian Hamiltonians

Hx = −µ(x)2∂2
x − 2µ(x)µ′(x)∂x − 1

4
µ′(x)2 − 1

2
µ(x)µ′′(x)

− 4V 2
2

f (x)2

(f (x)2 + 1)2
∓ 2iV2

f (x)(f (x)2 − 1)

(f (x)2 + 1)2
. (25)

All of which share (with µ(x) as defined in (19)) the same eigenvalues readily reported in
[12, 17] as

En = −
[
|V2| − n − 1

2

]2

; n = 0, 1, 2, . . . , nmax < (|V2| − 1/2). (26)

3.2. A periodic-type PT -symmetric Samsonov–Roy model

We may also recycle our η-weak-pseudo-Hermiticity generator

F(q) = − 4

3 cos2 q − 4
− 5

4
, (27)

that implies (with α◦ = 0) an effective periodic-type PT -symmetric Samsonov’s and Roy’s
[12, 14] reference potential

Ṽeff(q) = − 6

[cos q + 2i sin q]2
− 25

16
; R � q ∈ (−π, π). (28)

This results, in effect, a target effective potential of the form

Ṽeff(x) = − 6

[g(x) − 2iµ(x)g′(x)]2
− 25

16
, (29)
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where g(x) = cos(q(x)), µ(x) and q(x) are as given in (19) and (21), respectively. Hence,
the set of η-weak-pseudo-Hermitian target Hamiltonians

Hx = −µ(x)2∂2
x − 2µ(x)µ′(x)∂x − 1

4
µ′(x)2 − 1

2
µ(x)µ′′(x)

− 6

[g(x) − 2iµ(x)g′(x)]2
− 25

16
(30)

are isospectral and share the eigenvalues [12, 14]

En = n2

4
− 25

16
; n = 1, 3, 4, 5, . . . , (31)

with a missing n = 2 state (the details of which can be found in Samsonov and Roy [14]).

4. Concluding remarks

As long as η-weak-pseudo-Hermitian Hamiltonians are in point, their solvability-nature/type
(i.e., e.g., exact-, quasi-exact-, conditionally exact, etc) is still fresh and not yet adequately
explored. Amongst is the η-weak-pseudo-Hermitian von Roos PDM-Hamiltonian. In this
work, we tried to (at least) partially fill this gap and add a flavor into such solvability
territories of the η-weak-pseudo-Hermitian Hamiltonians associated with position-dependent-
mass settings.

In addition to mapping our η-weak-pseudo-Hermitian target-Hamiltonians Hx into
η-weak-pseudo-Hermitian reference-Hamiltonians Hq (that share the same spectra for Hx

and is advised to be exactly solvable), we have suggested a ‘user-friendly’ form (in Ṽeff(q) of
(18)) for the reference-target η-weak-pseudo-Hermitian PDM-Hamiltonians’ map. The usage
of which is exemplified through a non-Hermitian PT -symmetric Scarf II and a non-Hermitian
PT -symmetric Samsonov–Roy periodic-type models. It is observed that for each of these
models there is a set of exactly solvable isospectral target η-weak-pseudo-Hermitian PDM-
Hamiltonians (documented in (25) for Scarf II and in (30) for Samsonov–Roy). Hereby, it
should be noted that the isospectrality among the η-weak-pseudo-Hermitian Hamiltonians in
(16) is only manifested by the PDM choice of (17).

Of course there are other choices that might lead to some ‘user friendly’ forms of the
effective potential in (14). The feasibility of the associated isospectrality should always be
explored, therefore. For example, the choice

F(x) = µ′(x) 	⇒ µ(x) =
∫ x

F (y) dy, (32)

would imply an effective potential of the form

Ṽeff(q) = −iF ′(q) + (β + 1)F ′(q) + [4α(α + β + 1) + β]F(q)2 + α◦, (33)

Apart from the ambiguity parameters’ setting of β = −1 (and consequently α = γ = 0 by
the von Roos constraint α + β + γ = −1) considered by Mustafa and Mazharimousavi in
[12], we were unlucky to find any illustrative example that can be classified as ‘successful’
for such an effective potential form (33). Nonetheless, the corresponding target isospectral
set of η-weak-pseudo-Hermitian PDM-Hamiltonians is anticipated to be feasibly large (as
documented by (32)) and not restricted to the position-dependent-mass form (unlike the case
of Ṽeff(q) of (18), which is restricted to the position-dependent-mass function M(x) in (20)).

Moreover, we may report that a generating function F(q) = a exp(−q) would lead to
(with α◦ = 0) to

Ṽeff(q) = −a2 exp(−2q) + ia exp(−q) (34)

6
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of (18), and

Ṽeff(q) = a2[4α(α + β + 1) + β] exp(−2q) − a(β + 1 − i) exp(−q) (35)

of (33). The bound-states of the former in (34) (a non-Hermitian Morse model) are reported to
form an empty set of eigenvalues and, hence, labeled as ‘unfortunate’ for it leads to an empty
set of isospectral η-weak-pseudo-Hermitian target-Hamiltonians (cf, e.g., [12, 22, 23]). The
latter in (35), on the other hand, does not fit into any of the ‘so-far-known’ exactly solvable
non-Hermitian Morse-type models, to the best of our knowledge. These two models form
open problems (if their bound-state solutions exist at all), therefore.

Finally, one may add that the current strictly determined set of target effective potentials
Ṽeff(x) in (24) forms a subset of the target effective potentials reported in equations (25) and
(26) by Mustafa and Mazharimousavi [12]. A similar trend is also observed for Ṽeff(x) in (29)
as it forms a subset of the effective potentials in equations (34) and (35) of [12]. Hence, the
scenario of the energy-levels crossing and the feasible manifestation of the flown away states
discussed in [12] remains effective, as far as our two illustrative examples are concerned.
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